We develop a new method to fit the multivariate response linear regression model that exploits a parametric link between the regression coefficient matrix and the error covariance matrix. Specifically, we assume that the correlations between entries in the multivariate error random vector are proportional to the cosines of the angles between their corresponding regression coefficient matrix columns, so as the angle between two regression coefficient matrix columns decreases, the correlation between the corresponding errors increases. We highlight two models under which this parameterization arises: the latent variable reduced-rank regression model and the errors-in-variables regression model. We propose a novel non-convex weighted residual sum of squares criterion which exploits this parameterization and admits a new class of penalized estimators. The optimization is solved with an accelerated proximal gradient descent algorithm. Our method is used to study the association between microRNA expression and cancer drug activity measured on the NCI-60 cell lines. An R package implementing our method, MCMVR, is available at github.com/ajmolstad/MCMVR.
翻译:我们开发了一种新的方法来适应多变量反应线性回归模型,该模型利用回归系数矩阵与差错共差矩阵之间的参数联系。 具体地说, 我们假设多变量误差随机矢量条目之间的关联与其相应的回归系数矩阵列之间的角的正弦值成正比关系, 从而在两个回归系数矩阵列之间的角下降, 相应的差错增加之间的相互关系。 我们强调产生这一参数的两种模型: 潜伏变量降级回归模型和误差随变回归模型。 我们提出了一个新的非convex加权方形剩余总和标准, 利用这一参数化, 并接纳了一个新的受罚的估量类别。 优化是用加速的准梯度梯度下行算法解决的。 我们的方法用来研究微RNA表达与NCI- 60 单元格线测量的癌症药物活动之间的联系。 一个实施我们方法的R包, MCMVRRRR, 在 Github. com/ajmalstad/ MMCVR。