This paper presents a kernel-based adaptive filter that is applied for the digital domain self-interference cancellation (SIC) in a transceiver operating in full-duplex (FD) mode. In FD, the benefit of simultaneous transmission and receiving of signals comes at the price of strong self-interference (SI). In this work, we are primarily interested in suppressing the SI using an adaptive filter namely adaptive projected subgradient method (APSM) in a reproducing kernel Hilbert space (RKHS) of functions. Using the projection concept as a powerful tool, APSM is used to model and consequently remove the SI. A low-complexity and fast-tracking algorithm is provided taking advantage of parallel projections as well as the kernel trick in RKHS. The performance of the proposed method is evaluated on real measurement data. The method illustrates the good performance of the proposed adaptive filter, compared to the known popular benchmarks. They demonstrate that the kernel-based algorithm achieves a favorable level of digital SIC while enabling parallel computation-based implementation within a rich and nonlinear function space, thanks to the employed adaptive filtering method.


翻译:本文介绍了一个用于数字域自动干预取消(SIC)的基于内核的适应性过滤器,该过滤器用于以全复式(FD)模式运行的收发器中的数字域自动干预取消(SIC)。在FD中,同时传输和接收信号的好处是以强烈的自我干预(SI)的代价。在这项工作中,我们主要感兴趣的是利用一个适应性过滤器,即复制Hilbert空间(RKHS)的再生产内核预测子梯(APSM),压制SI。使用投影概念作为强大的工具,APSM被用于模拟并随后删除SI。低兼容性和快速跟踪算法利用平行预测以及RKHS的内核操纵。拟议方法的性能根据真实的测量数据进行评估。该方法显示了拟议的适应性过滤器与已知的流行基准相比的良好性能。它们表明基于内核的算法取得了有利的数字SIC水平,同时使基于计算的方法能够在丰富和非线性功能空间内平行实施,因为采用了适应性过滤法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员