The Stable Roommates problem with Ties and Incomplete lists (SRTI) is a matching problem characterized by the preferences of agents over other agents as roommates, where the preferences may have ties or be incomplete. SRTI asks for a matching that is stable and, sometimes, optimizes a domain-independent fairness criterion (e.g., Egalitarian). However, in real-world applications (e.g., assigning students as roommates at a dormitory), we usually consider a variety of domain-specific criteria depending on preferences over the habits and desires of the agents. With this motivation, we introduce a knowledge-based method to SRTI considering domain-specific knowledge, and investigate its real-world application for assigning students as roommates at a university dormitory. This paper is under consideration for acceptance in Theory and Practice of Logic Programming (TPLP).


翻译:平坦室友与铁皮和不完全名单(SRTI)的问题是一个相匹配的问题,其特点是代理人比其他代理人更喜欢室友,而室友的偏好可能是有联系的或不完整的。SRTI要求一种稳定、有时是优化独立领域公平标准(例如Egalitarian)的匹配。然而,在现实世界的应用中(例如,将学生分配到宿舍作为室友),我们通常会考虑视代理人习惯和愿望的偏好而制定各种特定领域的标准。有了这一动机,我们引入了一种基于知识的方法,让SRTI考虑特定领域的知识,并调查其将学生分配到大学宿舍作为室友的真人应用。本文正在考虑在逻辑规划的理论和实践中被接受。

0
下载
关闭预览

相关内容

《逻辑程序设计理论与实践》是一本国际性的期刊,它发表的论著涵盖了逻辑程序设计的理论与实践。逻辑适用于人工智能和计算机科学的所有领域。逻辑编程是这些领域的基础。其中包括使用逻辑编程的人工智能应用程序、逻辑编程方法、系统规范、分析和验证、归纳逻辑编程、多关系数据挖掘、自然语言处理、知识表示、非单调推理、语义web推理、数据库,实现和架构以及约束逻辑编程。 官网链接:https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
150+阅读 · 2021年5月9日
【干货书】Linux命令行与shell脚本编程大全,第3版818页pdf
专知会员服务
62+阅读 · 2020年12月30日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
3+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
150+阅读 · 2021年5月9日
【干货书】Linux命令行与shell脚本编程大全,第3版818页pdf
专知会员服务
62+阅读 · 2020年12月30日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
3+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Top
微信扫码咨询专知VIP会员