In this paper, we focus on the throughput of random access with power-domain non-orthogonal multiple access (NOMA) and derive bounds on the throughput. In particular, we demonstrate that the expression for the throughput derived in [1] is an upper-bound and derive a new lower-bound as a closed-form expression. This expression allows to find the traffic intensity that maximizes the lower-bound, which is shown to be the square root of the number of power levels in NOMA. Furthermore, with this expression, for a large number of power levels, we obtain the asymptotic maximum throughput that is increased at a rate of the square root of the number of power levels.


翻译:在本文中,我们侧重于使用非正向多个电源访问的随机访问的输出量, 并得出该传输量的界限。 特别是, 我们证明[ 1] 中衍生的传输量的表达式是一个上限, 并产生一个新的下限, 即一个封闭式表达式。 这个表达式可以找到使下限电量最大化的交通强度, 低限电量被显示为NOMA 中功率水平数的平方根 。 此外, 通过这个表达式, 对于众多的电力水平, 我们获得了以功率水平平方根速度增长的无药用最大输送量 。

0
下载
关闭预览

相关内容

【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
7+阅读 · 2019年3月28日
Arxiv
1+阅读 · 2021年12月22日
Arxiv
0+阅读 · 2021年12月20日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年3月28日
Top
微信扫码咨询专知VIP会员