As it has been discussed in the first part of this work, the utilization of advanced multiple access protocols and the joint optimization of the communication and computing resources can facilitate the reduction of delay for wireless federated learning (WFL), which is of paramount importance for the efficient integration of WFL in the sixth generation of wireless networks (6G). To this end, in this second part we introduce and optimize a novel communication protocol for WFL networks, that is based on non-orthogonal multiple access (NOMA). More specifically, the Compute-then-Transmit NOMA (CT-NOMA) protocol is introduced, where users terminate concurrently the local model training and then simultaneously transmit the trained parameters to the central server. Moreover, two different detection schemes for the mitigation of inter-user interference in NOMA are considered and evaluated, which correspond to fixed and variable decoding order during the successive interference cancellation process. Furthermore, the computation and communication resources are jointly optimized for both considered schemes, with the aim to minimize the total delay during a WFL communication round. Finally, the simulation results verify the effectiveness of CT-NOMA in terms of delay reduction, compared to the considered benchmark that is based on time-division multiple access.


翻译:正如在这项工作的第一部分中所讨论的那样,利用先进的多种存取协议以及联合优化通信和计算资源有助于减少无线联合学习(WFL)的延误,这对将WFL有效纳入第六代无线网络(6G)至关重要。为此,在第二部分中,我们采用并优化WFL网络的新颖通信协议,以非横向多重存取(NOMA)为基础。更具体地说,引入了计算-自动传输NOMA(CT-NOMA)协议,用户同时终止当地模式培训,然后将经过培训的参数传送到中央服务器。此外,审议和评价了两种不同的检测计划,以缓解NOMA用户之间的干扰,这两类计划与连续取消干扰过程中固定和可变的解码顺序相对应。此外,计算和通信资源在两种考虑的计划中都得到优化,目的是尽量减少WFLL通信回合中的全部拖延。最后,模拟结果核实CT-NOMA在延迟减少方面的效力,与考虑的多重存取基准相比较。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
45+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
0+阅读 · 2021年6月15日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
45+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员