This paper considers the estimation and testing of a class of high-dimensional non-stationary time series factor models with evolutionary temporal dynamics. In particular, the entries and the dimension of the factor loading matrix are allowed to vary with time while the factors and the idiosyncratic noise components are locally stationary. We propose an adaptive sieve estimator for the span of the varying loading matrix and the locally stationary factor processes. A uniformly consistent estimator of the effective number of factors is investigated via eigenanalysis of a non-negative definite time-varying matrix. A high-dimensional bootstrap-assisted test for the hypothesis of static factor loadings is proposed by comparing the kernels of the covariance matrices of the whole time series with their local counterparts. We examine our estimator and test via simulation studies and real data analysis.


翻译:本文考虑了具有进化时间动态的一组高维非静止时间序列要素模型的估计和测试,特别是允许要素装载矩阵的条目和尺寸随时间变化而变化,而各种因素和特殊噪音组成部分是当地固定的。我们为不同装载矩阵和当地固定系数过程的跨度提出一个适应性筛选估计仪。通过对非阴性的固定时间分布矩阵进行精密分析,对各种因素的有效数量进行统一一致的估算。我们通过将整个时间序列的共变矩阵的内核与其当地对应方进行比较,建议对静态要素装载假设进行高维靴辅助测试。我们通过模拟研究和真实数据分析,检查我们的估计和测试。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
51+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
4+阅读 · 2017年12月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
1+阅读 · 2022年2月7日
Arxiv
0+阅读 · 2022年2月5日
Arxiv
0+阅读 · 2022年2月5日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
4+阅读 · 2017年12月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员