With the increasing application of deep learning algorithms to time series classification, especially in high-stake scenarios, the relevance of interpreting those algorithms becomes key. Although research in time series interpretability has grown, accessibility for practitioners is still an obstacle. Interpretability approaches and their visualizations are diverse in use without a unified API or framework. To close this gap, we introduce TSInterpret an easily extensible open-source Python library for interpreting predictions of time series classifiers that combines existing interpretation approaches into one unified framework. The library features (i) state-of-the-art interpretability algorithms, (ii) exposes a unified API enabling users to work with explanations consistently and provides (iii) suitable visualizations for each explanation.
翻译:随着深入学习算法越来越多地应用于时间序列分类,特别是在高取量情景中,解释这些算法的相关性就变得十分关键。虽然对时间序列可解释性的研究已经增加,但从业者仍是一个障碍。在没有统一的API或框架的情况下,解释性方法及其可视化方法在使用上是多种多样的。为了缩小这一差距,我们引入了TSInterpret一个易于扩展的开放源码Python图书馆,用于解释时间序列分类器的预测,将现有解释方法合并成一个统一的框架。图书馆的特征(一) 最新技术解释性算法,(二) 暴露了统一的API使用户能够以一致的解释方式工作,并提供每种解释的适当可视化。