Due to the decentralized and public nature of the Blockchain ecosystem, the malicious activities on the Ethereum platform impose immeasurable losses for the users. Existing phishing scam detection methods mostly rely only on the analysis of original transaction networks, which is difficult to dig deeply into the transaction patterns hidden in the network structure of transaction interaction. In this paper, we propose a \underline{T}ransaction \underline{S}ub\underline{G}raph \underline{N}etwork (TSGN) based phishing accounts identification framework for Ethereum. We first extract transaction subgraphs for target accounts and then expand these subgraphs into corresponding TSGNs based on the different mapping mechanisms. In order to make our model incorporate more important information about real transactions, we encode the transaction attributes into the modeling process of TSGNs, yielding two variants of TSGN, i.e., Directed-TSGN and Temporal-TSGN, which can be applied to the different attributed networks. Especially, by introducing TSGN into multi-edge transaction networks, the Multiple-TSGN model proposed is able to preserve the temporal transaction flow information and capture the significant topological pattern of phishing scams, while reducing the time complexity of modeling large-scale networks. Extensive experimental results show that TSGN models can provide more potential information to improve the performance of phishing detection by incorporating graph representation learning.
翻译:由于链链生态系统的分散和公开性质,Eceenum平台上的恶意活动给用户带来了无法估量的损失。现有的钓鱼骗骗骗检测方法主要依赖原始交易网络的分析,而这种分析很难深入到交易互动网络结构中隐藏的交易模式。在本文中,我们建议采用一个基于Eeenum的phish账户识别框架,其基础是Eceenum的phish账户账户识别框架。我们首先为目标账户提取交易子集,然后根据不同的绘图机制将这些子集扩展为相应的TSGN。为了使我们的模型包含关于实际交易的更重要信息,我们把交易属性纳入TSGN的模型过程,产生两个TSGN的变式,即,直接的TSGN和Temalal-TSGN,这可以适用于不同的归属网络。我们首先将TSGN引入多端交易的交易子集,然后将这些子集扩大到基于不同绘图机制的对应的对应的TSGNGN,而多端-TF则显示巨大的交易模式,而多端交易模式则能够保存巨大的交易模式。