Brain-Computer Interfaces (BCIs) enable converting the brain electrical activity of an interface user to the user commands. BCI research studies demonstrated encouraging results in different areas such as neurorehabilitation, control of artificial limbs, control of computer environments, communication and detection of diseases. Most of BCIs use scalp-electroencephalography (EEG), which is a non-invasive method to capture the brain activity. Although EEG monitoring devices are available in the market, these devices are generally lab-oriented and expensive. Day-to-day use of BCIs is impractical at this time due to the complex techniques required for data preprocessing and signal analysis. This implies that BCI technologies should be improved to facilitate its widespread adoption in Cloud and Edge datacenters. This paper presents a case study on profiling the accuracy and performance of a brain-computer interface which runs on typical Cloud and Edge servers. In particular, we investigate how the accuracy and execution time of the preprocessing phase, i.e. the brain signal filtering phase, of a brain-computer interface varies when processing static and live streaming data obtained in real time BCI devices. We identify the optimal size of the packets for sampling brain signals which provides the best trade-off between the accuracy and performance. Finally, we discuss the pros and cons of using typical Cloud and Edge servers to perform the BCI filtering phase.
翻译:脑-计算机界面(BCI)能够将接口用户的脑电活动转换成用户指令。 BCI研究显示,在神经康复、控制假肢、控制计算机环境、通信和疾病检测等不同领域取得了令人鼓舞的结果。大多数BCI公司使用头皮-电子脑镜法(EEG),这是捕捉大脑活动的一种非侵入性方法。尽管在市场上可以使用电子电离电路监测装置,但这些装置一般是面向实验室的,而且费用很高。由于数据处理前和信号分析需要复杂的技术,目前使用BCI公司是不切实际的。这意味着BCI公司技术应加以改进,以便利其在云层和电磁带中广泛采用。本文介绍了对典型云层和电磁带服务器运行的大脑计算机界面的准确性和性能的案例研究。我们调查预处理阶段的准确性和执行时间,即大脑信号过滤阶段,在处理在实时和实时流流数据时,脑-计算机接口的大小因处理而不同。我们使用最佳的BCI公司级服务器和最精确性能进行B级的测试。