Subspace recycling iterative methods and other subspace augmentation schemes are a successful extension to Krylov subspace methods in which a Krylov subspace is augmented with a fixed subspace spanned by vectors deemed to be helpful in accelerating convergence or conveying knowledge of the solution. Recently, a survey was published, in which a framework describing the vast majority of such methods was proposed [Soodhalter et al, GAMM-Mitt. 2020]. In many of these methods, the Krylov subspace is one generated by the system matrix composed with a projector that depends on the augmentation space. However, it is not a requirement that a projected Krylov subspace be used. There are augmentation methods built on using Krylov subspaces generated by the original system matrix, and these methods also fit into the general framework. In this note, we observe that one gains implementation benefits by considering such augmentation methods with unprojected Krylov subspaces in the general framework. We demonstrate this by applying the idea to the R$^3$GMRES method proposed in [Dong et al. ETNA 2014] to obtain a simplified implementation and to connect that algorithm to early augmentation schemes based on flexible preconditioning [Saad. SIMAX 1997].
翻译:亚空间再循环迭代方法和其他子空间增强计划是Krylov 子空间方法的成功延伸,Krylov 子空间的扩展是Krylov 子空间方法的成功延伸,Krylov 子空间以固定的子空间范围扩大,由矢量媒介组成,被认为有助于加速趋同或传递对解决方案的了解;最近公布了一项调查,其中提出了描述绝大多数此类方法的框架[Soodhalter等人,GAMM-Mitt.2020];在许多这些方法中,Krylov 子空间是由由一个取决于增强空间的投影机组成的系统矩阵生成的。然而,不要求使用一个预测的Krylov 子空间。在使用Krylov 子空间的基础上建立了一些增强方法,这些方法也与总体框架相适应。在本说明中,我们注意到,通过考虑这种增强方法在总框架内使用未预测的Krylov 子空间,我们通过将这一想法应用于[Dong et al. ETNA] 中提议的R$3GMRES 方法来证明这一点。但并不要求使用一个预测的预测的Krylov 将Krylov 亚空间用于获得简化实施和将1997年早期的SAxx 的系统与SA 连接以获得一个简化的先决条件。