Encyclopedic knowledge platforms are key gateways through which users explore information online. The recent release of Grokipedia, a fully AI-generated encyclopedia, introduces a new alternative to traditional, well-established platforms like Wikipedia. In this context, search engine mechanisms play an important role in guiding users exploratory paths, yet their behavior across different encyclopedic systems remains underexplored. In this work, we address this gap by providing the first comparative analysis of search engine in Wikipedia and Grokipedia. Using nearly 10,000 neutral English words and their substrings as queries, we collect over 70,000 search engine results and examine their semantic alignment, overlap, and topical structure. We find that both platforms frequently generate results that are weakly related to the original query and, in many cases, surface unexpected content starting from innocuous queries. Despite these shared properties, the two systems often produce substantially different recommendation sets for the same query. Through topical annotation and trajectory analysis, we further identify systematic differences in how content categories are surfaced and how search engine results evolve over multiple stages of exploration. Overall, our findings show that unexpected search engine outcomes are a common feature of both the platforms, even though they exhibit discrepancies in terms of topical distribution and query suggestions.
翻译:百科知识平台是用户在线探索信息的关键门户。近期发布的完全由人工智能生成的百科全书Grokipedia,为维基百科等传统成熟平台提供了新的替代方案。在此背景下,搜索引擎机制在引导用户探索路径方面发挥着重要作用,但其在不同百科系统中的行为模式仍未得到充分研究。本研究通过首次对维基百科和Grokipedia的搜索引擎进行对比分析来填补这一空白。我们使用近10,000个中性英语词汇及其子串作为查询词,收集了超过70,000条搜索引擎结果,并检验其语义对齐性、重叠度和主题结构。研究发现:两个平台频繁生成与原始查询词弱相关的结果,且在许多情况下会从无害查询中浮现出意外内容。尽管存在这些共性,两个系统对相同查询往往产生显著不同的推荐集合。通过主题标注和轨迹分析,我们进一步识别出内容类别呈现方式以及多阶段探索过程中搜索结果演化的系统性差异。总体而言,研究结果表明意外搜索结果在这两个平台中均为普遍现象,尽管它们在主题分布和查询建议方面存在显著差异。