Bitcoin mining hardware acquisition requires strategic timing due to volatile markets, rapid technological obsolescence, and protocol-driven revenue cycles. Despite mining's evolution into a capital-intensive industry, there is little guidance on when to purchase new Application-Specific Integrated Circuit (ASIC) hardware, and no prior computational frameworks address this decision problem. We address this gap by formulating hardware acquisition as a time series classification task, predicting whether purchasing ASIC machines yields profitable (Return on Investment (ROI) >= 1), marginal (0 < ROI < 1), or unprofitable (ROI <= 0) returns within one year. We propose MineROI-Net, an open source Transformer-based architecture designed to capture multi-scale temporal patterns in mining profitability. Evaluated on data from 20 ASIC miners released between 2015 and 2024 across diverse market regimes, MineROI-Net outperforms LSTM-based and TSLANet baselines, achieving 83.7% accuracy and 83.1% macro F1-score. The model demonstrates strong economic relevance, achieving 93.6% precision in detecting unprofitable periods and 98.5% precision for profitable ones, while avoiding misclassification of profitable scenarios as unprofitable and vice versa. These results indicate that MineROI-Net offers a practical, data-driven tool for timing mining hardware acquisitions, potentially reducing financial risk in capital-intensive mining operations. The model is available through: https://github.com/AMAAI-Lab/MineROI-Net.


翻译:由于市场波动剧烈、技术快速迭代以及协议驱动的收益周期,比特币挖矿硬件采购需要战略性择时。尽管挖矿已演变为资本密集型产业,但关于何时采购新型专用集成电路(ASIC)硬件的指导极为有限,且现有计算框架均未解决这一决策问题。为填补该空白,本研究将硬件采购建模为时间序列分类任务,预测在一年内采购ASIC矿机是否会产生盈利(投资回报率(ROI)≥1)、边际收益(0<ROI<1)或亏损(ROI≤0)。我们提出了MineROI-Net,一种基于Transformer架构的开源模型,旨在捕捉挖矿盈利能力的多尺度时间模式。通过在2015年至2024年间发布的20款ASIC矿机数据、涵盖不同市场周期的评估中,MineROI-Net的表现优于基于LSTM和TSLANet的基线模型,实现了83.7%的准确率和83.1%的宏观F1分数。该模型展现出显著的经济相关性:在识别亏损周期时达到93.6%的精确率,在识别盈利周期时达到98.5%的精确率,同时避免了将盈利场景误判为亏损(反之亦然)的情况。这些结果表明,MineROI-Net为挖矿硬件采购时机选择提供了实用、数据驱动的工具,有望降低资本密集型挖矿运营的财务风险。模型可通过以下链接获取:https://github.com/AMAAI-Lab/MineROI-Net。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员