Today deep learning is widely used for building software. A software engineering problem with deep learning is that finding an appropriate convolutional neural network (CNN) model for the task can be a challenge for developers. Recent work on AutoML, more precisely neural architecture search (NAS), embodied by tools like Auto-Keras aims to solve this problem by essentially viewing it as a search problem where the starting point is a default CNN model, and mutation of this CNN model allows exploration of the space of CNN models to find a CNN model that will work best for the problem. These works have had significant success in producing high-accuracy CNN models. There are two problems, however. First, NAS can be very costly, often taking several hours to complete. Second, CNN models produced by NAS can be very complex that makes it harder to understand them and costlier to train them. We propose a novel approach for NAS, where instead of starting from a default CNN model, the initial model is selected from a repository of models extracted from GitHub. The intuition being that developers solving a similar problem may have developed a better starting point compared to the default model. We also analyze common layer patterns of CNN models in the wild to understand changes that the developers make to improve their models. Our approach uses commonly occurring changes as mutation operators in NAS. We have extended Auto-Keras to implement our approach. Our evaluation using 8 top voted problems from Kaggle for tasks including image classification and image regression shows that given the same search time, without loss of accuracy, Manas produces models with 42.9% to 99.6% fewer number of parameters than Auto-Keras' models. Benchmarked on GPU, Manas' models train 30.3% to 641.6% faster than Auto-Keras' models.


翻译:641.6 今天深层学习被广泛用于建设软件。深层学习的软件工程问题在于找到适合该任务的神经神经网络(CNN)模型对于开发者来说是一个挑战。最近关于Autom-Keras等工具所体现的Auto-Keras的工程,更精确的神经结构搜索(NAS)旨在解决这个问题,基本上将它视为一个搜索问题,其起点是默认的CNN模式,而这一CNN模式的突变使得能够探索CNN模型的空间,找到一个能最好地解决问题的CNN模型。这些工程在制作高精度CNN模型方面已经取得了巨大的成功。然而,有两个问题。首先,NAS的工程成本可能非常高,往往要花几个小时才能完成。第二,NAS制作的CNN模型可能非常复杂,因此更难理解这些模型,而且要花费更多成本来培训它们。我们为NAS提出了一个全新的方法,而不是从默认的CNN模式开始,而最初的模型是从从一个存储的模型中选择一个比GitHUNR的更快速的模型。直观设计者可能比G-K的模型在创建一个更好的起始点,而没有比WAND的模型。我们在运行模型中使用了30级的模型的模型的模型中,我们用普通的模型,我们用普通的模型来进行着的模型的模型的模型。我们用普通的模型的模型的模型,我们用到不断的模型来理解的模型的模型,我们使用。我们用到不断的模型,我们用来去的模型的模型,我们用来去的模型的模型的模型,我们用到不断的模型,我们用到不断的模型的模型的模型的模型的模型的模型,我们用到正在的模型,我们用在运行的模型,我们用到不断的模型的模型,我们用到正在的模型的模型,我们用的模型,我们用到不断的模型,我们用到不断的模型的模型,我们使用。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
72+阅读 · 2019年8月14日
Arxiv
13+阅读 · 2018年1月11日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员