The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this work we study a natural family of admission control policies which keep the associated scaled cumulative workload asymptotically close to a pre-specified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload processes are shown to converge weakly in the path space to the solution of a $d$-dimensional stochastic differential equation (SDE) driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the SDE (averaged over the $d$-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches infinity, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter $H>1/2$.
翻译:无限源源 Poisson 抵达模式,其工作量分布繁忙,引起了人们的极大注意,特别是在通信网络数据包传输模式的模型中。特别是,众所周知,在对源抵达率的适当假设下,基础处理系统的中央和规模累积工作量过程可以被分数布朗运动所近似。在许多应用中,人们有兴趣通过修改净输入率,采用适当的接收控制政策,稳定流入系统的工作流量。在这项工作中,我们研究的是接纳控制政策的自然组合,它使相关的超大累积工作量在时间上一致地接近预先指定的线性轨道。在这种入境控制政策和对抵达分配的自然假设下,适当规模和规模的累积工作量过程在路径空间中被微弱地集中到由高斯进程驱动的美元维维维度随机差异方程方程式(SDE)的解决方案第二个时刻(平均值在$-美元-标准1的线性轨迹上)的累计工作量周期性组合。一个特殊的SDE(平均为$-美元-美元-平方位) 由我们驱动的硬度/平方平方平点控制政策在一定的时间里,一个固定地获得一个特殊的硬的周期。