In recent years, many works have addressed the problem of finding never-seen-before anomalies in videos. Yet, most work has been focused on detecting anomalous frames in surveillance videos taken from security cameras. Meanwhile, the task of anomaly detection (AD) in videos exhibiting anomalous mechanical behavior, has been mostly overlooked. Anomaly detection in such videos is both of academic and practical interest, as they may enable automatic detection of malfunctions in many manufacturing, maintenance, and real-life settings. To assess the potential of the different approaches to detect such anomalies, we evaluate two simple baseline approaches: (i) Temporal-pooled image AD techniques. (ii) Density estimation of videos represented with features pretrained for video-classification. Development of such methods calls for new benchmarks to allow evaluation of different possible approaches. We introduce the Physical Anomalous Trajectory or Motion (PHANTOM) dataset, which contains six different video classes. Each class consists of normal and anomalous videos. The classes differ in the presented phenomena, the normal class variability, and the kind of anomalies in the videos. We also suggest an even harder benchmark where anomalous activities should be spotted on highly variable scenes.


翻译:近年来,许多作品解决了在录像中发现从未见过的异常现象的问题,然而,大多数工作的重点是探测从安全摄像头摄取的监视录像中的异常框架;同时,在展示异常机械行为的录像中发现异常现象的任务大多被忽略;在这种录像中发现异常现象既具有学术和实际的兴趣,因为它们可以自动发现许多制造、维护和真实生活环境中的故障;为了评估不同方法发现此类异常现象的潜力,我们评估了两种简单的基线方法:(一) 临时组合图像自动应用技术;(二) 对带有视频分类预先训练特征的录像的密度估计;制定这类方法要求制定新的基准,以便能够评价不同可能的方法;我们介绍物理异常现象轨迹或移动(PhantOM)数据集,其中包括六个不同的视频类别;每个类别由正常和反常态视频组成;在呈现的现象、正常类别变异性以及视频中的反常类型方面,各类别不同。我们还建议对可变的场景进行更精确的定位。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
32+阅读 · 2021年9月16日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Arxiv
16+阅读 · 2021年3月2日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
相关论文
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Arxiv
16+阅读 · 2021年3月2日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员