We present efficient methods for Brillouin zone integration with a non-zero but possibly very small broadening factor $\eta$, focusing on cases in which downfolded Hamiltonians can be evaluated efficiently using Wannier interpolation. We describe robust, high-order accurate algorithms automating convergence to a user-specified error tolerance $\varepsilon$, emphasizing an efficient computational scaling with respect to $\eta$. After analyzing the standard equispaced integration method, applicable in the case of large broadening, we describe a simple iterated adaptive integration algorithm effective in the small $\eta$ regime. Its computational cost scales as $\mathcal{O}(\log^3(\eta^{-1}))$ as $\eta \to 0^+$ in three dimensions, as opposed to $\mathcal{O}(\eta^{-3})$ for equispaced integration. We argue that, by contrast, tree-based adaptive integration methods scale only as $\mathcal{O}(\log(\eta^{-1})/\eta^{2})$ for typical Brillouin zone integrals. In addition to its favorable scaling, the iterated adaptive algorithm is straightforward to implement, particularly for integration on the irreducible Brillouin zone, for which it avoids the tetrahedral meshes required for tree-based schemes. We illustrate the algorithms by calculating the spectral function of SrVO$_3$ with broadening on the meV scale.
翻译:我们用非零但可能非常小的扩大因子美元来介绍布列罗宁区整合的高效方法,我们提出的是非零但可能非常小的扩大因子美元,重点是使用Wannier内插法来有效评估下沉汉密尔顿人的情况。我们描述强健的、高阶准确的算法将趋同率自动化为用户指定的差错容忍值$$\varepsilon$,强调对美元进行高效计算。在分析适用于大规模扩大的标准平准融合方法之后,我们描述了一个简单的迭代的宽度适应性整合算法,在小的美元制度中有效。它的计算成本比值为$\mathal{O}(log}3 (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) ) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) ) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)