Research into adversarial examples (AE) has developed rapidly, yet static adversarial patches are still the main technique for conducting attacks in the real world, despite being obvious, semi-permanent and unmodifiable once deployed. In this paper, we propose Short-Lived Adversarial Perturbations (SLAP), a novel technique that allows adversaries to realize physically robust real-world AE by using a light projector. Attackers can project a specifically crafted adversarial perturbation onto a real-world object, transforming it into an AE. This allows the adversary greater control over the attack compared to adversarial patches: (i) projections can be dynamically turned on and off or modified at will, (ii) projections do not suffer from the locality constraint imposed by patches, making them harder to detect. We study the feasibility of SLAP in the self-driving scenario, targeting both object detector and traffic sign recognition tasks, focusing on the detection of stop signs. We conduct experiments in a variety of ambient light conditions, including outdoors, showing how in non-bright settings the proposed method generates AE that are extremely robust, causing misclassifications on state-of-the-art networks with up to 99% success rate for a variety of angles and distances. We also demostrate that SLAP-generated AE do not present detectable behaviours seen in adversarial patches and therefore bypass SentiNet, a physical AE detection method. We evaluate other defences including an adaptive defender using adversarial learning which is able to thwart the attack effectiveness up to 80% even in favourable attacker conditions.


翻译:对对抗性实例(AE)的研究已经迅速发展,但静态对抗性防御补丁仍然是在现实世界中发动攻击的主要技巧,尽管这些攻击是显而易见的、半永久性的和一旦部署后无法修改的。在本文中,我们提议采用一种新颖的技术,使对手能够通过光投影机实现实体强大的真实世界AE。攻击者可以将一种专门设计的对抗性干扰投向现实世界物体,将其转化为AE。这使得对手能够比对对抗性防御网进行更大的控制:(一) 预测可以动态地改变和关闭,或随时修改;(二) 预测不会因补丁强加的局部限制而受到影响,使其更难检测。我们研究在自我驱动情景中,针对物体探测器和交通信号识别任务的可行性,重点是检测停止信号。因此,我们在各种环境光线条件下进行实验,包括室外试验,表明在非右环境环境中,拟议的方法产生A型和E型移动式测试速度非常稳健,在A级和A型飞行机率上,我们发现A型探测速度最接近A级的直径。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
机器学习 TOP 10 必读论文 | 资源
北京思腾合力科技有限公司
17+阅读 · 2017年12月29日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月2日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
机器学习 TOP 10 必读论文 | 资源
北京思腾合力科技有限公司
17+阅读 · 2017年12月29日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月2日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
5+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员