The applicability of process mining techniques hinges on the availability of event logs capturing the execution of a business process. In some use cases, particularly those involving customer-facing processes, these event logs may contain private information. Data protection regulations restrict the use of such event logs for analysis purposes. One way of circumventing these restrictions is to anonymize the event log to the extent that no individual can be singled out using the anonymized log. This paper addresses the problem of anonymizing an event log in order to guarantee that, upon disclosure of the anonymized log, the probability that an attacker may single out any individual represented in the original log, does not increase by more than a threshold. The paper proposes a differentially private disclosure mechanism, which oversamples the cases in the log and adds noise to the timestamps to the extent required to achieve the above privacy guarantee. The paper reports on an empirical evaluation of the proposed approach using 14 real-life event logs in terms of data utility loss and computational efficiency.


翻译:工序采矿技术的适用性取决于是否有记录记录记录来记录执行商业过程的情况。在某些使用案例中,特别是涉及客户关注过程的事件,这些事件记录可能包含私人信息。数据保护条例限制为分析目的使用这种事件记录。绕开这些限制的一个办法是,在使用匿名日志时将事件记录匿名化,使没有个人无法被单独点出。本文件论述将事件记录匿名化的问题,以确保在披露匿名日志时,攻击者可能点出原始日志中代表的任何个人的可能性不会增加超过阈值。本文提议了一种差别化的私人披露机制,该机制将记录中的案件标出过多,并在时间戳上增加噪音,达到上述隐私保障要求的程度。本文件报告了在数据效用损失和计算效率方面使用14个真实事件记录对拟议方法进行实证评价的情况。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员