Analogy-making is at the core of human intelligence and creativity with applications to such diverse tasks as commonsense reasoning, learning, language acquisition, and story telling. This paper contributes to the foundations of artificial general intelligence by introducing from first principles an abstract algebraic framework of analogical proportions of the form `$a$ is to $b$ what $c$ is to $d$' in the general setting of universal algebra. This enables us to compare mathematical objects possibly across different domains in a uniform way which is crucial for AI-systems. The main idea is to define solutions to analogical equations in terms of maximal sets of algebraic justifications, which amounts to deriving abstract terms of concrete elements from a `known' source domain which can then be instantiated in an `unknown' target domain to obtain analogous elements. It turns out that our notion of analogical proportions has appealing mathematical properties. For example, we show that analogical proportions preserve functional dependencies across different domains, which is desirable. We extensively compare our framework with two prominent and recently introduced frameworks of analogical proportions from the literature in the concrete domains of sets, numbers, and words, and we show that in each case we either disagree with the notion from the literature justified by some plausible counter-examples or we can show that our model yields strictly more reasonable solutions. This provides evidence for its applicability. In a broader sense, this paper is a first step towards a theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems like commonsense reasoning and computational learning and creativity.


翻译:分析是人类智慧和创造力的核心,应用了常识推理、学习、语言获取和故事叙事等多种任务。本文件通过从头等原则引入“a美元”形式模拟比例的抽象代数框架,即美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元”在通用代数总体设置中模拟比例的抽象代数框架,为人造一般情报奠定了基础。这使我们能够以对AI系统至关重要的统一方式,对不同领域的数学对象进行比较。主要思路是确定模拟方程式的解决方案,用最高代数解释理由组合来界定模拟方程式。这相当于从“已知”源域从“已知”源域得出具体要素的抽象代数,然后在“未知”目标域中即可即刻录“美元”为美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元“美元”在通用代数的一般代数的一般代数中,从而获得类似的要素。我们通过对不同领域的类比比例保持不同领域的功能依赖性,这是可取的。我们广泛比较我们的框架与两个突出和最近引进的代数比框架,从具体文献的可比较的可理解性框架,从具体的可理解性域中,我们用直判法表示我们每个理论的判断和直判判判判判法的判断,我们用的判断,我们用的判断的判断和直判法能能提供了我们从每个理论的判断的判断的判断,我们用法的判断法,我们用法,我们用法的判断法,我们用法和直判法的判断法,我们用法的判断法,我们用法,我们用法的判断的判断的理论和判断的判断的判断法,我们用法,我们用法,我们用法能能提供的判断的判断的理论的理论和判断的理论的理论的每个理论的理论的理论的每个理论的判断性,我们用法,我们用法,我们用法,我们用法的每个的理论的理论的理论的理论的理论的理论的理论的理论的判断法能和判断法的理论的理论的理论的判断法,我们用法的理论的判断法的理论的判断法,我们用法的判断法的判断法的理论的理论的理论的理论的理论的理论的理论的理论的理论的理论的理论的理论的理论的理论的

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年8月28日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员