The AlphaGo, AlphaGo Zero, and AlphaZero series of algorithms are remarkable demonstrations of deep reinforcement learning's capabilities, achieving superhuman performance in the complex game of Go with progressively increasing autonomy. However, many obstacles remain in the understanding of and usability of these promising approaches by the research community. Toward elucidating unresolved mysteries and facilitating future research, we propose ELF OpenGo, an open-source reimplementation of the AlphaZero algorithm. ELF OpenGo is the first open-source Go AI to convincingly demonstrate superhuman performance with a perfect (20:0) record against global top professionals. We apply ELF OpenGo to conduct extensive ablation studies, and to identify and analyze numerous interesting phenomena in both the model training and in the gameplay inference procedures. Our code, models, selfplay datasets, and auxiliary data are publicly available at https://ai.facebook.com/tools/elf-opengo/.
翻译:AlphaGo、AlphaGo Zero和AlphaZero系列的算法是深度强化学习能力、在复杂的Go游戏中取得超人性表现并逐渐增强自主性的显著证明。然而,在研究界对这些有希望的方法的理解和可用性方面,仍然存在许多障碍。为了澄清尚未解决的谜题并促进未来的研究,我们提议开放的ELF OpenGo,这是阿尔法Zero算法的开放源的重新实施。开放的ELF OploGo是第一个开放源码的开放源码 Go AI, 以令人信服地展示超人的表现, 其与全球顶尖专业人员的完美记录( 20:0) 。我们应用ELF OpenGo 进行广泛的反动研究,并查明和分析模型培训和游戏推论程序中的许多有趣的现象。我们的代码、模型、自玩数据集和辅助数据可在https://ai.facebook.com/tools/elf-opengo/上公开查阅。