Forgetting - or variable elimination - is an operation that allows the removal, from a knowledge base, of middle variables no longer deemed relevant. In recent years, many different approaches for forgetting in Answer Set Programming have been proposed, in the form of specific operators, or classes of such operators, commonly following different principles and obeying different properties. Each such approach was developed to somehow address some particular view on forgetting, aimed at obeying a specific set of properties deemed desirable in such view, but a comprehensive and uniform overview of all the existing operators and properties is missing. In this paper, we thoroughly examine existing properties and (classes of) operators for forgetting in Answer Set Programming, drawing a complete picture of the landscape of these classes of forgetting operators, which includes many novel results on relations between properties and operators, including considerations on concrete operators to compute results of forgetting and computational complexity. Our goal is to provide guidance to help users in choosing the operator most adequate for their application requirements.


翻译:忘记(或变数消除)是一种行动,它使得人们能够从知识库中去除不再认为相关的中变数。近年来,以特定操作者或此类操作者类别的形式,提出了许多不同的方法,在答盘编程中遗忘,通常遵循不同原则并服从不同属性。每种方法的制定都是为了以某种方式处理对遗忘的某些特定观点,目的是遵从这种观点中认为可取的一套特定属性,但缺少对所有现有操作者和属性的全面和统一的概览。在本文中,我们彻底审查了在答盘编程中遗忘的现有属性和(操作者类别)操作者,描绘了这些“忘记”操作者类别的总体情况,其中包括关于属性和操作者之间关系的许多新结果,包括考虑具体操作者计算遗忘和计算复杂性的结果。我们的目标是提供指导,帮助用户选择最适合其应用要求的操作者。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
57+阅读 · 2021年5月3日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
57+阅读 · 2021年5月3日
Top
微信扫码咨询专知VIP会员