Humanoid robots, with their human-like morphology, hold great potential for industrial applications. However, existing loco-manipulation methods primarily focus on dexterous manipulation, falling short of the combined requirements for dexterity and proactive force interaction in high-load industrial scenarios. To bridge this gap, we propose a reinforcement learning-based framework with a decoupled three-stage training pipeline, consisting of an upper-body policy, a lower-body policy, and a delta-command policy. To accelerate upper-body training, a heuristic reward function is designed. By implicitly embedding forward kinematics priors, it enables the policy to converge faster and achieve superior performance. For the lower body, a force-based curriculum learning strategy is developed, enabling the robot to actively exert and regulate interaction forces with the environment.
翻译:人形机器人凭借其类人的形态,在工业应用中展现出巨大潜力。然而,现有的移动操作方法主要侧重于灵巧操作,难以满足高负载工业场景中对灵巧性与主动力交互能力的综合需求。为弥补这一不足,我们提出一种基于强化学习的框架,采用解耦的三阶段训练流程,包括上半身策略、下半身策略以及增量指令策略。为加速上半身训练,设计了一种启发式奖励函数,通过隐式嵌入正向运动学先验知识,使策略能够更快收敛并实现更优性能。针对下半身,开发了一种基于力的课程学习策略,使机器人能够主动施加并调节与环境的交互力。