Recent studies have shown that deep neural networks are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin.


翻译:最近的研究显示,深层神经网络很容易受到故意设计的对抗性实例的影响,而且提出了各种防范神经中子神经中子神经中子神经中子神经中子神经中子神经中子反应的对抗性用词替代攻击的方法,然而,对于在同一攻击背景下比较不同的防御方法缺乏系统的研究,在本文件中,我们力求通过全面研究来填补系统研究的空白,了解在有代表性的对抗性攻击中,通过各种防御方法培训的神经文本分类人员的行为。此外,我们提出了一种有效方法,以进一步提高神经文本分类人员对付这种攻击的稳健性,并大大地精确地利用GENEWS和IMDB数据集的清洁和对抗性例子。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【Github】GPT2-Chinese:中文的GPT2训练代码
AINLP
52+阅读 · 2019年8月23日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月19日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【Github】GPT2-Chinese:中文的GPT2训练代码
AINLP
52+阅读 · 2019年8月23日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员