We propose a novel optimization-based decoding algorithm for LDPC-coded massive MIMO channels. The proposed decoding algorithm is based on a proximal gradient method for solving an approximate maximum a posteriori (MAP) decoding problem. The key idea is the use of a code-constraint polynomial penalizing a vector far from a codeword as a regularizer in the approximate MAP objective function. The code proximal operator is naturally derived from code-constraint polynomials. The proposed algorithm, called proximal decoding, can be described by a simple recursion consisting of the gradient descent step for a negative log-likelihood function and the code proximal operation. Several numerical experiments show that the proposed algorithm outperforms known massive MIMO detection algorithms, such as an MMSE detector with belief propagation decoding.
翻译:我们建议为LDPC 编码的大型 MIMO 频道使用新颖的基于优化的解码算法。 提议的解码算法基于一种近似梯度梯度方法, 用于解决一个近似最大后代解码问题。 关键的想法是使用一个代码限制的多元法, 远未将矢量作为一种代码字词作为MAP 目标功能的常规化器来惩罚。 代码准数操作器自然地来自代码限制的多元分子。 提议的算法, 称为预数解码, 可以用简单的递归法描述, 包括负日志相似函数的梯度下移步和代码准数操作。 几个数字实验显示, 提议的算法比已知的大型MIMO 检测算法( 如具有信仰传播解码的 MMSE 探测器) 。