Colorectal cancer is one of fatal cancer worldwide. Colonoscopy is the standard treatment for examination, localization, and removal of colorectal polyps. However, it has been shown that the miss-rate of colorectal polyps during colonoscopy is between 6 to 27%. The use of an automated, accurate, and real-time polyp segmentation during colonoscopy examinations can help the clinicians to eliminate missing lesions and prevent further progression of colorectal cancer. The ``Medico automatic polyp segmentation challenge'' provides an opportunity to study polyp segmentation and build a fast segmentation model. The challenge organizers provide a Kvasir-SEG dataset to train the model. Then it is tested on a separate unseen dataset to validate the efficiency and speed of the segmentation model. The experiments demonstrate that the model trained on the Kvasir-SEG dataset and tested on an unseen dataset achieves a dice coefficient of 0.7801, mIoU of 0.6847, recall of 0.8077, and precision of 0.8126, demonstrating the generalization ability of our model. The model has achieved 80.60 FPS on the unseen dataset with an image resolution of $512 \times 512$.
翻译:直肠癌是全世界致命的癌症之一。 科洛诺色谱是检查、 本地化和移除直肠切片聚醚的标准治疗方法。 但是, 已经显示结肠镜检查期间的直肠切片断裂率为6- 27 % 。 在结肠镜检查期间使用自动、 准确和实时的聚分解可帮助临床医生消除缺失的损伤,防止染色癌进一步蔓延。 “ 地中海自动聚变分解挑战” 提供了一个研究聚分化和构建快速分化模型的机会。 挑战组织者提供了Kvasir- SEG数据集来培训模型。 然后在单独的隐蔽数据集上测试,以验证分解模型的效率和速度。 实验表明,在Kvasir- SEG数据集中培训并测试的模型达到了0. 78012 mIoU的 dice 系数, 0. 8077, 和 0. 8126 的精确度, 展示了我们模型的总化能力。 模型实现了560 FPS 分辨率。