The ability of reconfigurable intelligent surfaces (RIS) to produce complex radiation patterns in the far-field is determined by various factors, such as the unit-cell's size, shape, spatial arrangement, tuning mechanism, the communication and control circuitry's complexity, and the illuminating source's type (point/planewave). Research on RIS has been mainly focused on two areas: first, the optimization and design of unit-cells to achieve desired electromagnetic responses within a specific frequency band; and second, exploring the applications of RIS in various settings, including system-level performance analysis. The former does not assume any specific radiation pattern on the surface level, while the latter does not consider any particular unit-cell design. Both approaches largely ignore the complexity and power requirements of the RIS control circuitry. As we progress towards the fabrication and use of RIS in real-world settings, it is becoming increasingly necessary to consider the interplay between the unit-cell design, the required surface-level radiation patterns, the control circuit's complexity, and the power requirements concurrently. In this paper, a benchmarking framework for RIS is employed to compare performance and analyze tradeoffs between the unit-cell's specified radiation patterns and the control circuit's complexity for far-field beamforming, considering different diode-based unit-cell designs for a given surface size. This work lays the foundation for optimizing the design of the unit-cells and surface-level radiation patterns, facilitating the optimization of RIS-assisted wireless communication systems.


翻译:可重构智能表面(RIS)产生远场复杂辐射模式的能力由多种因素决定,例如单元单元的大小、形状、空间排列、调谐机制、通信和控制电路的复杂性以及照明源的类型(点源 / 平面)。对 RIS 的研究主要集中在两个方面:第一,优化和设计单元单元以在特定频带内实现所需的电磁响应;第二,探索 RIS 在各种环境中的应用,包括系统级性能分析。前者不假设表面级别上的任何特定辐射模式,而后者不考虑任何特定单元规划。这两种方法都在很大程度上忽略了 RIS 控制电路的复杂性和功率要求。随着我们向现实世界中的 RIS 的制造和使用迈进,考虑单元设计、所需的表面级别辐射模式、控制电路复杂度和功率要求之间的相互作用正在变得越来越必要。在本文中,采用 RIS 的基准测试框架来比较性能,并分析在给定表面尺寸下,单元的指定辐射模式和控制电路复杂度之间的权衡,考虑不同的二极管基单元设计以进行远场波束成形。这项工作为优化单元单元和表面级辐射模式的设计奠定了基础,促进了优化 RIS 辅助无线通信系统。

0
下载
关闭预览

相关内容

《联合全域指挥与控制 (JADC2)》逻辑图
专知会员服务
191+阅读 · 2022年6月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
CCF-TF 智能媒体计算国际研讨会
CCF多媒体专委会
0+阅读 · 2022年5月23日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员