Physical platforms such as trapped ions suffer from coherent noise where errors manifest as rotations about a particular axis and can accumulate over time. We investigate passive mitigation through decoherence free subspaces, requiring the noise to preserve the code space of a stabilizer code, and to act as the logical identity operator on the protected information. Thus, we develop necessary and sufficient conditions for all transversal $Z$-rotations to preserve the code space of a stabilizer code, which require the weight-$2$ $Z$-stabilizers to cover all the qubits that are in the support of some $X$-component. Further, the weight-$2$ $Z$-stabilizers generate a direct product of single-parity-check codes with even block length. By adjusting the size of these components, we are able to construct a large family of QECC codes, oblivious to coherent noise, that includes the $[[4L^2, 1, 2L]]$ Shor codes. Moreover, given $M$ even and any $[[n,k,d]]$ stabilizer code, we can construct an $[[Mn, k, \ge d]]$ stabilizer code that is oblivious to coherent noise. If we require that transversal $Z$-rotations preserve the code space only up to some finite level $l$ in the Clifford hierarchy, then we can construct higher level gates necessary for universal quantum computation. The $Z$-stabilizers supported on each non-zero $X$-component form a classical binary code C, which is required to contain a self-dual code, and the classical Gleason's theorem constrains its weight enumerator. The conditions for a stabilizer code being preserved by transversal $2\pi/2^l$ $Z$-rotations at $4 \le l \le l_{\max} <\infty$ level in the Clifford hierarchy lead to generalizations of Gleason's theorem that may be of independent interest to classical coding theorists.


翻译:被困的物理平台会受到一致的噪音, 错误表现为某个轴的旋转, 并且可以随时间累积。 我们通过不协调的平流子空间来调查被动的缓解, 需要噪音来保存稳定器代码的空间, 并在受保护的信息中充当逻辑身份操作员。 因此, 我们为所有跨端的 $Z 旋转创造必要和足够的条件, 以保存稳定器代码的代码空间, 需要重量 - 2美元 美元 的振荡器来覆盖所有正在支持某种 X$的qbits。 此外, 重量 - 2 美元 美元 的平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流, 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流, 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流, 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流, 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流, 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流

0
下载
关闭预览

相关内容

专知会员服务
80+阅读 · 2021年5月10日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
41+阅读 · 2021年1月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
0+阅读 · 2021年7月2日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
VIP会员
相关VIP内容
专知会员服务
80+阅读 · 2021年5月10日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
41+阅读 · 2021年1月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员