One of the key technologies for the future cellular networks is full-duplex (FD) enabled Integrated Access and Backhaul (IAB) networks operating in the millimeter-wave (mmWave) frequencies. The main challenge in realizing the FD-IAB networks is mitigating the impact of self-interference (SI) in the wideband mmWave frequencies. In this article, we first introduce the 3GPP IAB network architectures and wideband mmWave channel models. By utilizing the subarray-based hybrid precoding scheme, at the FD-IAB-node, multiuser interference is mitigated using zero-forcing (ZF) at the transmitter, whereas the residual SI after successfully deploying antenna and analog cancellation is canceled by minimum mean square error (MMSE) baseband combiner at the receiver. The spectral efficiency (SE) is evaluated for the RF insertion loss (RFIL) with different kinds of phase shifters and the channel uncertainty. Simulation results show that, in the presence of the RFIL, the almost double SE, which is close to that obtained from fully connected hybrid precoding, can be achieved as compared with half-duplex systems, when the uncertainties are of low strength.
翻译:未来蜂窝网络的关键技术之一是在毫米波频率内运行的全复(FD)启用的综合存取和回击(IAB)网络。实现FD-IAB网络的主要挑战是如何减轻宽频毫米波频率内自干预(SI)的影响。在本篇文章中,我们首先介绍了3GPP IAB网络架构和宽频毫米双向频道模型。通过在FD-IAB节使用基于次阵列的混合预编码计划,在发射机使用零推进(ZF)来缓解多用户干扰,而成功部署天线后剩余的SI和模拟取消后,通过接收器最小平均平方差(MMSE)基带组合器取消。光谱效率(SE)用于评估有不同级变换器和频道不确定性的RFPP(RFIL)插入损失。模拟结果显示,在有FD-IL存在的情况下,在完全连接的混合前置力的系统中,几乎有两倍的SE,与半个系统相比,从完全连接的混凝度中可以实现。