Airborne particles are the medium for SARS-CoV-2 to invade the human body. Light also reflects through suspended particles in the air, allowing people to see a colorful world. Impressionism is the most prominent art school that explores the spectrum of color created through color reflection of light. We find similarities of color structure and color stacking in the Impressionist paintings and the illustrations of the novel coronavirus by artists around the world. With computerized data analysis through the main tones, the way of color layout, and the way of color stacking in the paintings of the Impressionists, we train computers to draw the novel coronavirus in an Impressionist style using a Generative Adversarial Network to create our artwork "Medium. Permeation". This artwork is composed of 196 randomly generated viral pictures arranged in a 14 by 14 matrix to form a large-scale painting. In addition, we have developed an extended work: Gradual Change, which is presented as video art. We use Graph Neural Network to present 196 paintings of the new coronavirus to the audience one by one in a gradual manner. In front of LED TV screen, audience will find 196 virus paintings whose colors will change continuously. This large video painting symbolizes that worldwide 196 countries have been invaded by the epidemic, and every nation continuously pops up mutant viruses. The speed of vaccine development cannot keep up with the speed of virus mutation. This is also the first generative art in the world based on the common features and a metaphorical symbiosis between Impressionist art and the novel coronavirus. This work warns us of the unprecedented challenges posed by the SARS-CoV-2, implying that the world should not ignore the invisible enemy who uses air as a medium.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
Top
微信扫码咨询专知VIP会员