Multicasting is a vital information dissemination technique in Software-Defined Networking (SDN). With SDN, a multicast service can incorporate network functions implemented at different nodes, which is referred to as software-defined multicast. Emerging ubiquitous wireless networks for 5G and Beyond (B5G) inherently support multicast. However, the broadcast nature of wireless channels, especially in dense deployments, leads to neighborhood interference as a primary system degradation factor, which introduces a new challenge for software-defined multicast in wireless mesh networks. To tackle this, this paper introduces a novel approach, based on the idea of minimizing both the total length cost of the multicast tree and the interference at the same time. Accordingly, a bicriteria optimization problem is formulated, which is called \emph{Minimum Interference Steiner Tree (MIST)}. To solve the bicriteria problem, instead of resorting to heuristics, this paper employs an innovative approach that is an approximate algorithm for MIST but with guaranteed performance. Specifically, the approach is a two-stage relaxation algorithm by exploiting the monotone submodularity property of the interference metric and identifying Pareto optimal solutions for MIST. Simulation results demonstrate and validate the performance of the proposed algorithm.
翻译:暂无翻译