Given the coordinates of the terminals $ \{(x_j,y_j)\}_{j=1}^n $ of the full Euclidean Steiner tree, its length equals $$ \left| \sum_{j=1}^n z_j U_j \right| \, , $$ where $ \{z_j:=x_j+ \mathbf i y_j\}_{j=1}^n $ and $ \{U_j\}_{j=1}^n $ are suitably chosen $ 6 $th roots of unity. We also extend this result for the cost of the optimal Weber networks which are topologically equivalent to some full Steiner trees.
翻译:以整个Euclidean Steiner树(x_j,y_j) j=1 $n美元的终端坐标,其长度等于$ left\\\\ sum\j=1\nz_j U_j\right\\\\\,美元,其中z_j:x_j+\mathbf i y_j ⁇ j=1 $和 {U_j\j=j=1 $美元是适当选择的团结根基6美元。我们也将这一结果推广到最佳Weber网络的成本,这些网络在表面上相当于一些完整的Seinera树。