This paper concerns the parameter estimation problem for the quadratic potential energy in interacting particle systems from continuous-time and single-trajectory data. Even though such dynamical systems are high-dimensional, we show that the vanilla maximum likelihood estimator (without regularization) is able to estimate the interaction potential parameter with optimal rate of convergence simultaneously in mean-field limit and in long-time dynamics. This to some extend avoids the curse-of-dimensionality for estimating large dynamical systems under symmetry of the particle interaction.
翻译:本文从连续时间和单轨数据中涉及交互式粒子系统中的二次能量潜在能量的参数估计问题。 尽管这种动态系统是高维的,但我们表明,香草最大可能性估计器(不正规化)能够同时在平均场限和长期动态中以最佳的趋同率估计互动潜在参数。 这在一定程度上避免了在粒子相互作用的对称下估计大型动态系统的极限- 维度。