Amyotrophic lateral sclerosis (ALS) is incurable neurological disorder with rapidly progressive course. Common early symptoms of ALS are difficulty in swallowing and speech. However, early acoustic manifestation of speech and voice symptoms is very variable, that making their detection very challenging, both by human specialists and automatic systems. This study presents an approach to voice assessment for automatic system that separates healthy people from patients with ALS. In particular, this work focus on analysing of sustain phonation of vowels /a/ and /i/ to perform automatic classification of ALS patients. A wide range of acoustic features such as MFCC, formants, jitter, shimmer, vibrato, PPE, GNE, HNR, etc. were analysed. We also proposed a new set of acoustic features for characterizing harmonic structure of the vowels. Calculation of these features is based on pitch synchronized voice analysis. A linear discriminant analysis (LDA) was used to classify the phonation produced by patients with ALS and those by healthy individuals. Several algorithms of feature selection were tested to find optimal feature subset for LDA model. The study's experiments show that the most successful LDA model based on 32 features picked out by LASSO feature selection algorithm attains 99.7% accuracy with 99.3% sensitivity and 99.9% specificity. Among the classifiers with a small number of features, we can highlight LDA model with 5 features, which has 89.0% accuracy (87.5% sensitivity and 90.4% specificity).


翻译:ALS 是快速进化的神经性神经系统, 无法治愈。 ALS 的常见早期症状是吞咽和言语困难。 然而, 语言和声音症状的早期声学表现非常多, 使得人类专家和自动系统都很难发现这些症状。 这项研究为将健康的人与患ALS的病人区分开来的自动系统提供了一种声音评估方法。 特别是, 这项工作的重点是分析是否持续发声器/ a/ 和/ i/ 的幻觉, 以进行ALS病人的自动分类。 已经对多种声音特征进行了广泛的测试, 如MFCC、 形成者、 弹道、 闪烁、 vibrato、 PPPE、 GNE、 HNR 等。 我们还提出了一套新的声学特征, 以调音结构将健康的人与患ALS 的病人区分开来。 使用线性言调分析(LAA) 4 模型和健康人 。 一些地貌模型的算方法经过测试, 找到了精度为LDA 99 的精度 的精度指标 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
An Agent-Based Modelling Approach to Brain Drain
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员