Granger causality is among the widely used data-driven approaches for causal analysis of time series data with applications in various areas including economics, molecular biology, and neuroscience. Two of the main challenges of this methodology are: 1) over-fitting as a result of limited data duration, and 2) correlated process noise as a confounding factor, both leading to errors in identifying the causal influences. Sparse estimation via the LASSO has successfully addressed these challenges for parameter estimation. However, the classical statistical tests for Granger causality resort to asymptotic analysis of ordinary least squares, which require long data durations to be useful and are not immune to confounding effects. In this work, we close this gap by introducing a LASSO-based statistic and studying its non-asymptotic properties under the assumption that the true models admit sparse autoregressive representations. We establish that the sufficient conditions of LASSO also suffice for robust identification of Granger causal influences. We also characterize the false positive error probability of a simple thresholding rule for identifying Granger causal effects. We present simulation studies and application to real data to compare the performance of the ordinary least squares and LASSO in detecting Granger causal influences, which corroborate our theoretical results.


翻译:由数据驱动的因果关系是广泛使用的数据驱动的方法,用于对时间序列数据进行因果分析,并应用于各个领域,包括经济学、分子生物学和神经科学,这种方法的两个主要挑战是:(1) 由于数据期限有限,过度使用数据,和(2) 相关过程噪音是一个令人困惑的因素,导致在确定因果关系方面出现错误;通过LASSO进行的粗略估计成功地解决了参数估计的这些挑战;然而,对Gerger因果关系的典型统计测试采用对普通最小方形的无症状分析,这需要较长的数据期限才能有用,不能避免混乱效应;在这项工作中,我们通过采用基于LASSO的统计数据和研究其非症状特性来弥补这一差距,前提是假设真实模型允许稀少的自反射性表示;我们确定LASSSO的充分条件也足以有力地确定Granger因果关系。我们还将简单临界值规则的误差概率描述为确定Granger因果关系效果。我们提出模拟研究和应用真实数据,以比较我们普通的因果影响的表现,在SARSO 和LASSO中,用以比较普通的理论性结果的校验。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
53+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
“CVPR 2020 接受论文列表 1470篇论文都在这了
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年4月27日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员