As an effective form of narrative visualization, visual data stories are widely used in data-driven storytelling to communicate complex insights and support data understanding. Although important, they are difficult to create, as a variety of interdisciplinary skills, such as data analysis and design, are required. In this work, we introduce Erato, a human-machine cooperative data story editing system, which allows users to generate insightful and fluent data stories together with the computer. Specifically, Erato only requires a number of keyframes provided by the user to briefly describe the topic and structure of a data story. Meanwhile, our system leverages a novel interpolation algorithm to help users insert intermediate frames between the keyframes to smooth the transition. We evaluated the effectiveness and usefulness of the Erato system via a series of evaluations including a Turing test, a controlled user study, a performance validation, and interviews with three expert users. The evaluation results showed that the proposed interpolation technique was able to generate coherent story content and help users create data stories more efficiently.
翻译:视觉数据故事作为一种有效的叙述性可视化形式,被广泛用于数据驱动的故事叙事,以传达复杂的见解,支持数据理解。虽然重要,但很难创造,因为需要各种跨学科技能,如数据分析和设计。在这项工作中,我们引入了人类机器合作数据故事编辑系统Erato,这是一个人工机器数据故事编辑系统,使用户能够与计算机一起生成有洞察力和流畅的数据故事。具体地说,Erato只要求用户提供若干关键框架,以简要描述数据故事的主题和结构。与此同时,我们的系统利用一种新型的内插算法,帮助用户在关键框架之间插入中间框架,以平稳过渡。我们通过一系列评估,包括图灵测试、受控用户研究、性能验证以及与三名专家用户的访谈,评估了Erato系统的有效性和实用性。评价结果表明,拟议的内插技术能够生成连贯的故事内容,帮助用户更有效地创建数据故事。