Extreme event attribution (EEA), an approach for assessing the extent to which disasters are caused by climate change, is crucial for informing climate policy and legal proceedings. Machine learning is increasingly used for EEA by modeling rare weather events otherwise too complex or computationally intensive to model using traditional simulation methods. However, the validity of using machine learning in this context remains unclear, particularly as high-stakes machine learning applications in general are criticized for inherent bias and lack of robustness. Here we use machine learning and simulation analyses to evaluate EEA in the context of California wildfire data from 2003-2020. We identify three major threats to validity: (1) individual event attribution estimates are highly sensitive to algorithmic design choices; (2) common performance metrics like area under the ROC curve or Brier score are not strongly correlated with attribution error, facilitating suboptimal model selection; and (3) distribution shift -- changes in temperature across climate scenarios -- substantially degrades predictive performance. To address these challenges, we propose a more valid and robust attribution analysis based on aggregate machine learning estimates, using an additional metric -- mean calibration error -- to assess model performance, and using subgroup and propensity diagnostics to assess distribution shift.
翻译:极端事件归因(EEA)是一种评估灾害在多大程度上由气候变化引起的方法,对于制定气候政策和法律诉讼至关重要。机器学习正越来越多地用于EEA,通过建模罕见的天气事件,这些事件若使用传统的模拟方法则过于复杂或计算密集。然而,在此背景下使用机器学习的有效性仍不明确,特别是由于高风险机器学习应用普遍因固有偏见和缺乏鲁棒性而受到批评。本文利用机器学习和模拟分析,基于2003-2020年加利福尼亚州野火数据评估EEA。我们识别出三个主要的有效性威胁:(1)单个事件归因估计对算法设计选择高度敏感;(2)常见的性能指标(如ROC曲线下面积或Brier分数)与归因误差相关性不强,导致模型选择次优;(3)分布偏移——不同气候情景下温度的变化——显著降低预测性能。为应对这些挑战,我们提出一种基于聚合机器学习估计的更有效且鲁棒的归因分析方法,使用额外指标——平均校准误差——评估模型性能,并利用子群和倾向性诊断评估分布偏移。