Generalizing causal knowledge across diverse environments is challenging, especially when estimates from large-scale datasets must be applied to smaller or systematically different contexts, where external validity is critical. Model-based estimators of individual treatment effects (ITE) from machine learning require large sample sizes, limiting their applicability in domains such as behavioral sciences with smaller datasets. We demonstrate how estimation of ITEs with Treatment Agnostic Representation Networks (TARNet; Shalit et al., 2017) can be improved by leveraging knowledge from source datasets and adapting it to new settings via transfer learning (TL-TARNet; Aloui et al., 2023). In simulations that vary source and sample sizes and consider both randomized and non-randomized intervention target settings, the transfer-learning extension TL-TARNet improves upon standard TARNet, reducing ITE error and attenuating bias when a large unbiased source is available and target samples are small. In an empirical application using the India Human Development Survey (IHDS-II), we estimate the effect of mothers' firewood collection time on children's weekly study time; transfer learning pulls the target mean ITEs toward the source ITE estimate, reducing bias in the estimates obtained without transfer. These results suggest that transfer learning for causal models can improve the estimation of ITE in small samples.
翻译:在不同环境中泛化因果知识具有挑战性,尤其当大规模数据集的估计结果需应用于规模较小或系统性差异的语境时,外部有效性至关重要。基于机器学习模型的个体处理效应估计器需要大样本量,这限制了其在行为科学等小数据集领域的适用性。我们通过利用源数据集知识并借助迁移学习将其适配至新环境,展示了如何改进使用处理无关表示网络的个体处理效应估计。在模拟实验中,通过改变源数据集规模与样本量,并考虑随机化与非随机化干预目标场景,迁移学习扩展版本相较于标准处理无关表示网络有所提升:当存在大规模无偏源数据集且目标样本较小时,能降低个体处理效应误差并减弱偏差。在印度人类发展调查的实证应用中,我们估计了母亲拾柴时间对儿童每周学习时间的影响;迁移学习使目标平均个体处理效应向源数据集估计值靠拢,减少了无迁移时估计结果的偏差。这些结果表明,因果模型的迁移学习能够提升小样本条件下个体处理效应的估计精度。