The energy optimization and demand side management (DSM) of Internet of Things (IoT)-enabled microgrids are being transformed by generative artificial intelligence, such as large language models (LLMs). This paper explores the integration of LLMs into energy management, and emphasizes their roles in automating the optimization of DSM strategies with Internet of Electric Vehicles (IoEV) as a representative example of the Internet of Vehicles (IoV). We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. The results demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, and highlight our solution's significant advancements in energy efficiency and user adaptability. This work shows LLMs' potential in energy optimization of the IoT-enabled microgrids and promotes intelligent DSM solutions.
翻译:物联网微电网的能源优化与需求侧管理(DSM)正因生成式人工智能(如大型语言模型)而发生变革。本文探讨了将LLMs集成到能源管理中的方法,并以电动汽车物联网(IoEV)作为车联网(IoV)的代表性案例,重点阐述了LLMs在自动化优化DSM策略中的作用。我们研究了与DSM相关的挑战及解决方案,并探讨了利用LLMs所带来的新机遇。随后,我们提出了一种创新解决方案,通过检索增强生成技术增强LLMs,以实现自动问题建模、代码生成和定制化优化。结果证明了我们提出的解决方案在电动汽车充电调度与优化中的有效性,并突显了该方案在能源效率和用户适应性方面的显著进步。本工作展示了LLMs在物联网微电网能源优化中的潜力,并推动了智能DSM解决方案的发展。