Social media (SM) have become an integral part of our lives, expanding our inter-linking capabilities to new levels. There is plenty to be said about their positive effects. On the other hand however, some serious negative implications of SM have repeatedly been highlighted in recent years, pointing at various SM threats for society, and its teenagers in particular: from common issues (e.g. digital addiction and polarization) and manipulative influences of algorithms to teenager-specific issues (e.g. body stereotyping). The full impact of current SM platform design -- both at an individual and societal level -- asks for a comprehensive evaluation and conceptual improvement. We extend measures of Collective Well-Being (CWB) to SM communities. As users' relationships and interactions are a central component of CWB, education is crucial to improve CWB. We thus propose a framework based on an adaptive "social media virtual companion" for educating and supporting the entire students' community to interact with SM. The virtual companion will be powered by a Recommender System (CWB-RS) that will optimize a CWB metric instead of engagement or platform profit, which currently largely drives recommender systems thereby disregarding any societal collateral effect. CWB-RS will optimize CWB both in the short term, by balancing the level of SM threat the students are exposed to, as well as in the long term, by adopting an Intelligent Tutor System role and enabling adaptive and personalized sequencing of playful learning activities. This framework offers an initial step on understanding how to design SM systems and embedded educational interventions that favor a more healthy and positive society.


翻译:社会媒体(SM)已成为我们生活的一个组成部分,将我们之间的内在联系能力扩大到新的层面,将我们的健康媒体(SM)平台设计的全面影响 -- -- 无论是个人还是社会层面 -- -- 要求进行全面的评价和概念改进。我们把集体福利(CWB)措施推广到SM社区。由于用户关系和互动是CWB的核心组成部分,教育对于改善CWB至关重要。因此,我们提出了一个基于适应性“社会媒体虚拟同伴”的框架,以教育和支持整个学生群体与SM互动。虚拟伴侣将受到一个建议系统(CWB-RS)的推动,该系统将优化CWB衡量标准而不是参与或平台利润。 目前,我们把集体福利(CWB)措施推广到SB社区。由于用户关系和互动是CWB的核心组成部分,因此教育对于改善CWB至关重要。 以适应性“社会媒体虚拟伴侣”为基础,以教育和支持整个学生群体与SM互动。虚拟伴侣将由一个建议系统(CWB-RS-RS-RS)的优势系统(CWB-RS)提供最优化的干预,而不是参与或平台利润。在最初阶段里程中,这在很大程度上推动着使CWB-SB的系统(C-SB)能够使C-SB的自我升级,使得C-SB系统能够使C-lax-lax-lax-lax-lax-lax-lax-lax)系统成为一个最接近。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Top
微信扫码咨询专知VIP会员