Question answering (QA) is an important use case on voice assistants. A popular approach to QA is extractive reading comprehension (RC) which finds an answer span in a text passage. However, extractive answers are often unnatural in a conversational context which results in suboptimal user experience. In this work, we investigate conversational answer generation for QA. We propose AnswerBART, an end-to-end generative RC model which combines answer generation from multiple passages with passage ranking and answerability. Moreover, a hurdle in applying generative RC are hallucinations where the answer is factually inconsistent with the passage text. We leverage recent work from summarization to evaluate factuality. Experiments show that AnswerBART significantly improves over previous best published results on MS MARCO 2.1 NLGEN by 2.5 ROUGE-L and NarrativeQA by 9.4 ROUGE-L.
翻译:问题解答(QA)是语音助理的一个重要有用案例。对质量解答(QA)的流行做法是抽取阅读理解(RC),在文本段落中找到答案。然而,在谈话背景下,抽取的答案往往不自然,导致用户经验不尽人意。在这项工作中,我们调查QA的对话解答(QA)生成。我们建议“回答”BART(一个端到端的归端的归端的RC模型),将多个通道的解答生成的答案与通过等级和可答性结合起来。此外,应用基因解析RC(RC)的一个障碍是,答案与文本事实上不一致的幻觉。我们利用最近的工作,从总结到评估事实质量。实验显示,“答案”与2.5 ROUGE-L和NarturationQA的9.4 ROUGE-L的MS MARCO 2.1 NLGEN 最佳公布结果相比,“答案”有很大改进。