Supervised training of neural networks requires large, diverse and well annotated data sets. In the medical field, this is often difficult to achieve due to constraints in time, expert knowledge and prevalence of an event. Artificial data augmentation can help to prevent overfitting and improve the detection of rare events as well as overall performance. However, most augmentation techniques use purely spatial transformations, which are not sufficient for video data with temporal correlations. In this paper, we present a novel methodology for workflow augmentation and demonstrate its benefit for event recognition in cataract surgery. The proposed approach increases the frequency of event alternation by creating artificial videos. The original video is split into event segments and a workflow graph is extracted from the original annotations. Finally, the segments are assembled into new videos based on the workflow graph. Compared to the original videos, the frequency of event alternation in the augmented cataract surgery videos increased by 26%. Further, a 3% higher classification accuracy and a 7.8% higher precision was achieved compared to a state-of-the-art approach. Our approach is particularly helpful to increase the occurrence of rare but important events and can be applied to a large variety of use cases.


翻译:对神经网络的监督培训需要大量、多样和有良好说明的数据集。在医疗领域,由于时间限制、专家知识和事件流行程度的限制,这往往难以实现。人工数据增强有助于防止对稀有事件的探测和总体性能的过度和改进。然而,大多数增强技术使用纯空间变换,这些变换不足以与时间相关性的视频数据。在本文中,我们介绍了工作流程增强的新方法,并展示了其在白内障外科手术中事件识别的好处。拟议方法通过制作人工视频增加事件变换频率。原始视频分为事件片段,从原始说明中提取工作流程图。最后,根据工作流程图将部分组装成新的视频。与原始视频相比,扩大的白内障外科手术视频中事件变换频率增加了26%。此外,与最新方法相比,分类精确度提高了3%,精确度提高了7.8%。我们的方法特别有助于增加稀有但重要的事件的发生,可以应用于大量使用的案例。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
27+阅读 · 2020年9月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
27+阅读 · 2020年9月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员