We use type-theoretic techniques to present an algebraic theory of $\infty$-categories with strict units. Starting with a known type-theoretic presentation of fully weak $\infty$-categories, in which terms denote valid operations, we extend the theory with a non-trivial definitional equality. This forces some operations to coincide strictly in any model, yielding the strict unit behaviour. We make a detailed investigation of the meta-theoretic properties of this theory. We give a reduction relation that generates definitional equality, and prove that it is confluent and terminating, thus yielding the first decision procedure for equality in a strictly-unital setting. Moreover, we show that our definitional equality relation identifies all terms in a disc context, providing a point comparison with a previously proposed definition of strictly unital $\infty$-category. We also prove a conservativity result, showing that every operation of the strictly unital theory indeed arises from a valid operation in the fully weak theory. From this, we infer that strict unitality is a property of an $\infty$-category rather than additional structure.
翻译:我们使用类型理论技术来用严格的单位来展示 $\ infty $- cates 的代数理论。 从已知的完全弱的 $\ infty $- clagos 类型理论演示开始,我们用有效操作的术语来表达理论。 我们用非三重定义平等来扩展理论。 这迫使某些操作在任何模型中严格吻合,产生严格的单位行为。 我们对这一理论的元理论特性进行详细调查。 我们给出了产生定义平等的减少关系, 并证明它具有兼容性和终止性, 从而在严格单位环境下产生第一个平等决定程序。 此外, 我们表明我们的定义平等关系在盘中确定了所有术语, 提供了与先前提议的严格单位 $\ inty- 类定义的点比较。 我们还证明了一种保守性的结果, 表明严格单位理论的每一项操作都来自完全薄弱的理论中有效的操作。 我们从这个角度推断, 严格的单位性是美元- 而不是美元- 类结构的属性。