The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving massive machine type communication (mMTC) applications. To this end, 3GPP introduced the need to use fast uplink grant (FUG) allocation in order to reduce latency and increase reliability for smart internet-of-things (IoT) applications with strict QoS constraints. We propose a novel FUG allocation based on support vector machine (SVM), First, MTC devices are prioritized using SVM classifier. Second, LSTM architecture is used for traffic prediction and correction techniques to overcome prediction errors. Both results are used to achieve an efficient resource scheduler in terms of the average latency and total throughput. A Coupled Markov Modulated Poisson Process (CMMPP) traffic model with mixed alarm and regular traffic is applied to compare the proposed FUG allocation to other existing allocation techniques. In addition, an extended traffic model based CMMPP is used to evaluate the proposed algorithm in a more dense network. We test the proposed scheme using real-time measurement data collected from the Numenta Anomaly Benchmark (NAB) database. Our simulation results show the proposed model outperforms the existing RA allocation schemes by achieving the highest throughput and the lowest access delay of the order of 1 ms by achieving prediction accuracy of 98 $\%$ when serving the target massive and critical MTC applications with a limited number of resources.


翻译:目前随机接入(RA)分配技术在为大规模机器型通信(MMTC)应用提供大规模机器型通信(MMTC)应用时,受到拥堵和高信号管理管理技术的影响。为此,3GPP提出需要使用快速上链赠款(FUG)分配方法,以减少悬浮,提高智能互联网连接(IoT)应用的可靠性,同时严格限制QOS;我们提议采用基于支持矢量机(SVM)的新版本的FUG分配方法,首先,使用SVMM分类方法确定MTC设备的优先次序。第二,LSTM结构用于交通预测和校正技术,以克服预测错误。两种结果都用于在平均悬浮度和总吞吐量方面实现高效的资源调度。 将Compatid Markovov Modate Poisson 程序(CMMMPPP)的交通模式与混合警报和常规交通比较,将拟议的FUGMP的配置与其他现有的分配技术进行比较。此外,以CMMPPP为基础,在更密集的网络中,我们利用从Numenta An的精确定位中收集的实时测量数据来测试拟议的标准。

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
专知会员服务
114+阅读 · 2019年12月24日
已删除
将门创投
5+阅读 · 2019年4月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月2日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年4月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员