We study the Sobolev IPM problem for measures supported on a graph metric space, where critic function is constrained to lie within the unit ball defined by Sobolev norm. While Le et al. (2025) achieved scalable computation by relating Sobolev norm to weighted $L^p$-norm, the resulting framework remains intrinsically bound to $L^p$ geometric structure, limiting its ability to incorporate alternative structural priors beyond the $L^p$ geometry paradigm. To overcome this limitation, we propose to generalize Sobolev IPM through the lens of \emph{Orlicz geometric structure}, which employs convex functions to capture nuanced geometric relationships, building upon recent advances in optimal transport theory -- particularly Orlicz-Wasserstein (OW) and generalized Sobolev transport -- that have proven instrumental in advancing machine learning methodologies. This generalization encompasses classical Sobolev IPM as a special case while accommodating diverse geometric priors beyond traditional $L^p$ structure. It however brings up significant computational hurdles that compound those already inherent in Sobolev IPM. To address these challenges, we establish a novel theoretical connection between Orlicz-Sobolev norm and Musielak norm which facilitates a novel regularization for the generalized Sobolev IPM (GSI). By further exploiting the underlying graph structure, we show that GSI with Musielak regularization (GSI-M) reduces to a simple \emph{univariate optimization} problem, achieving remarkably computational efficiency. Empirically, GSI-M is several-order faster than the popular OW in computation, and demonstrates its practical advantages in comparing probability measures on a given graph for document classification and several tasks in topological data analysis.
翻译:我们研究了在图度量空间上支撑的测度的Sobolev IPM问题,其中评判函数被约束在由Sobolev范数定义的单位球内。尽管Le等人(2025年)通过将Sobolev范数与加权$L^p$范数相关联实现了可扩展计算,但所得框架本质上仍受限于$L^p$几何结构,限制了其在$L^p$几何范式之外纳入其他结构先验的能力。为克服这一局限,我们提出通过\emph{Orlicz几何结构}的视角来推广Sobolev IPM,该方法利用凸函数捕捉细微的几何关系,并基于最优传输理论的最新进展——特别是Orlicz-Wasserstein(OW)和广义Sobolev传输——这些进展已被证明对推进机器学习方法学至关重要。此推广将经典Sobolev IPM作为特例包含在内,同时能容纳传统$L^p$结构之外的多种几何先验。然而,这带来了显著的计算障碍,加剧了Sobolev IPM本身固有的计算难题。为解决这些挑战,我们建立了Orlicz-Sobolev范数与Musielak范数之间的新颖理论联系,从而为广义Sobolev IPM(GSI)提出了一种新的正则化方法。通过进一步利用底层图结构,我们证明采用Musielak正则化的GSI(GSI-M)可简化为一个简单的\emph{单变量优化}问题,实现了显著的计算效率。实证表明,GSI-M在计算上比流行的OW方法快数个数量级,并在文档分类和拓扑数据分析中的多项任务中,展示了其在给定图上比较概率测度的实际优势。