The abundance of modern health data provides many opportunities for the use of machine learning techniques to build better statistical models to improve clinical decision making. Predicting time-to-event distributions, also known as survival analysis, plays a key role in many clinical applications. We introduce a variational time-to-event prediction model, named Variational Survival Inference (VSI), which builds upon recent advances in distribution learning techniques and deep neural networks. VSI addresses the challenges of non-parametric distribution estimation by ($i$) relaxing the restrictive modeling assumptions made in classical models, and ($ii$) efficiently handling the censored observations, {\it i.e.}, events that occur outside the observation window, all within the variational framework. To validate the effectiveness of our approach, an extensive set of experiments on both synthetic and real-world datasets is carried out, showing improved performance relative to competing solutions.
翻译:大量现代卫生数据为利用机器学习技术来建立更好的统计模型以改善临床决策提供了许多机会。预测时间到活动分布,又称生存分析,在许多临床应用中发挥着关键作用。我们引入了一个变式时间到活动预测模型,名为变式生存推断(VSI),该模型以分销学习技术和深层神经网络的最新进展为基础。 VSI处理非参数分布估算的挑战,用美元来放松在古典模型中作出的限制性模型假设,用美元来应对非参数分布估计的挑战,用美元来应对在观察窗口外发生的、都在变式框架内的事件。为了验证我们的方法的有效性,在合成和现实世界数据集方面进行了广泛的实验,显示与竞争性解决方案相比,业绩有所改善。