Recent years have seen rapid deployment of mobile computing and Internet of Things (IoT) networks, which can be mostly attributed to the increasing communication and sensing capabilities of wireless systems. Big data analysis, pervasive computing, and eventually artificial intelligence (AI) are envisaged to be deployed on top of the IoT and create a new world featured by data-driven AI. In this context, a novel paradigm of merging AI and wireless communications, called Wireless AI that pushes AI frontiers to the network edge, is widely regarded as a key enabler for future intelligent network evolution. To this end, we present a comprehensive survey of the latest studies in wireless AI from the data-driven perspective. Specifically, we first propose a novel Wireless AI architecture that covers five key data-driven AI themes in wireless networks, including Sensing AI, Network Device AI, Access AI, User Device AI and Data-provenance AI. Then, for each data-driven AI theme, we present an overview on the use of AI approaches to solve the emerging data-related problems and show how AI can empower wireless network functionalities. Particularly, compared to the other related survey papers, we provide an in-depth discussion on the Wireless AI applications in various data-driven domains wherein AI proves extremely useful for wireless network design and optimization. Finally, research challenges and future visions are also discussed to spur further research in this promising area.


翻译:近年来,移动计算和物联网(IoT)网络迅速部署,这主要归功于无线系统的通信和感测能力不断增强。大数据分析、普遍计算和最终人工智能(AI)预计将在IoT之上部署,并创建一个由数据驱动的AI所呈现的新世界。在这方面,将AI和无线通信(称为无线AI)相结合的新模式,将AI的前沿推向网络边缘,被广泛视为未来智能网络演变的关键推动者。为此,我们从数据驱动的角度对无线AI的最新研究进行一项全面调查。具体地说,我们首先提出一个新的无线AI结构,涵盖无线网络中的五个关键数据驱动的AI主题,包括AI、网络设备AI、Access AI、用户设备AI和数据促进AI。随后,我们为每个数据驱动的AI主题概述了使用AI方法解决正在出现的数据相关问题,并表明AI能够如何增强无线网络的功能。与其他相关调查文件相比,我们为无线网络的未来无线化研究领域提供了一次有益的讨论,最后,在无线化研究领域,我们为无线网络的无线化研究展示了无线模型,在无线域中,最终展示了无线网络设计。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
专知会员服务
114+阅读 · 2020年10月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关VIP内容
专知会员服务
114+阅读 · 2020年10月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员