One of the most important aspects of moving forward to the next generation networks like 5G/6G, is to enable network slicing in an efficient manner. The most challenging issues are the uncertainties in computation and communication demand. Because the slices' arrive to the network in different times and their lifespans vary, the solution should dynamically react to online slice requests. The joint problem of online admission control and resource allocation considering the energy consumption is formulated mathematically. It is based on Binary Linear Programming (BLP), where, the $\Gamma$-Robustness concept is exploited to overcome Virtual Links (VL) bandwidths' and Virtual Network Functions (VNF) workloads' uncertainties. Then, an optimal algorithm is proposed. This optimal algorithm cannot be solved in a reasonable amount of time for real-world and large-scale networks. To find near-optimal solution efficiently, a new heuristic algorithm is developed. The assessments' results indicate that the efficiency of heuristic is vital in increasing the accepted requests' count, decreasing power consumption and providing adjustable tolerance vs. the VNFs workloads' and VLs traffics' uncertainties, separately. Considering the acceptance ratio and power consumption that constitute the two important components of the objective function, heuristic has about 7% and 10% optimality gaps, respectively, while being about 30X faster than that of optimal algorithm.
翻译:向下一代网络(如 5G/6G)前进的最重要方面之一是让网络有效切片。 最棘手的问题是计算和通信需求的不确定性。 由于切片在不同的时间和寿命期间到达网络, 解决方案应该对在线切片请求作出动态反应。 考虑到能源消耗, 在线录入控制和资源分配的共同问题是数学制定的。 它基于二进制线性编程(BLP), 在那里, $Gamma$- Robustness 概念被用来克服虚拟链接( VL) 带宽和虚拟网络功能(VNF) 工作量的不确定性。 然后, 提出一种最佳算法。 这种最佳算法无法在现实世界和大型网络的合理时间内解决。 要找到接近最佳的解决方案, 将开发一种新的超自然算法。 评估结果表明, 超自然效率对于增加所接受的请求的计算量至关重要, 降低电力消耗量, 提供可调整的容忍度与虚拟链接(VL) 带宽带宽带宽和虚拟网络功能(VNF) 工作量的不确定性。 然后, 最佳算法无法在现实世界和大型消费比例上分别构成重要的比例, 10 。