We develop an estimator for the change point parameter for a dynamically evolving graphical model, and also obtain its asymptotic distribution under high dimensional scaling. To procure the latter result, we establish that the proposed estimator exhibits an $O_p(\psi^{-2})$ rate of convergence, wherein $\psi$ represents the jump size between the graphical model parameters before and after the change point. Further, it retains sufficient adaptivity against plug-in estimates of the graphical model parameters. We characterize the forms of the asymptotic distribution under the both a vanishing and a non-vanishing regime of the magnitude of the jump size. Specifically, in the former case it corresponds to the argmax of a negative drift asymmetric two sided Brownian motion, while in the latter case to the argmax of a negative drift asymmetric two sided random walk, whose increments depend on the distribution of the graphical model. Easy to implement algorithms are provided for estimating the change point and their performance assessed on synthetic data. The proposed methodology is further illustrated on RNA-sequenced microbiome data and their changes between young and older individuals.
翻译:我们为动态进化图形模型的变换点参数开发一个估计值, 并在高维缩放下获得其无症状分布。 为了获取后一结果, 我们确定, 拟议的估计值显示一个 $_ p (\\ p\ p\ ⁇ ⁇ - 2} 美元) 汇合率, 其中$\ pi 表示图形模型参数在变换点之前和之后的跳动幅度。 此外, 相对于图形模型参数的插件估计值, 它保持足够的适配性。 我们描述在跳动规模的消失和非衰减制度下无症状分布的形式。 具体地说, 在前一情况下, 拟议的估计值与负漂移不对称两种相向的棕色运动的趋同, 在后一情况下, 美元代表负流对称对称的两次边随机行走的增量, 取决于图形模型的分布。 提供易于应用的算法用于估计变化点及其合成数据性评估的性能。 拟议的方法在 RNA 测序的微生物数据及其年轻和较老个人之间的变化中进一步说明。