Modern cloud orchestrators like Kubernetes provide a versatile and robust way to host applications at scale. One of their key features is autoscaling, which automatically adjusts cloud resources (compute, memory, storage) in order to adapt to the demands of applications. However, the scope of cloud autoscaling is limited to the datacenter hosting the cloud and it doesn't apply uniformly to the allocation of network resources. In I/O-constrained or data-in-motion use cases this can lead to severe performance degradation for the application. For example, when the load on a cloud service increases and the Wide Area Network (WAN) connecting the datacenter to the Internet becomes saturated, the application flows experience an increase in delay and loss. In many cases this is dealt with overprovisioning network capacity, which introduces additional costs and inefficiencies. On the other hand, thanks to the concept of "Network as Code", the WAN exposes a set of APIs that can be used to dynamically allocate and de-allocate capacity on-demand. In this paper we propose extending the concept of cloud autoscaling into the network to address this limitation. This way, applications running in the cloud can communicate their networking requirements, like bandwidth or traffic profile, to a Software-Defined Networking (SDN) controller or Network as a Service (NaaS) platform. Moreover, we aim to define the concepts of vertical and horizontal autoscaling applied to networking. We present a prototype that automatically allocates bandwidth to the underlay network, according to the requirements of the applications hosted in Kubernetes. Finally, we discuss open research challenges.


翻译:Kubernetes 等现代云管设计器提供了一种多功能和稳健的方式, 用于在规模上托管应用程序。 例如, 其关键特征之一是自动升级, 自动调整云层资源( 计算、 内存、 存储), 以适应应用程序的需求。 但是, 云层自动扩缩的范围仅限于接收云层的数据中心, 并且不统一适用于网络资源的分配。 在 I/ O- Contract 或数据移动使用中, 这可能导致应用程序的性能严重退化。 例如, 当云服务负荷增加和将数据中心连接到互联网的广域网( WAN) 变得饱和时, 应用程序会经历延迟和损失的增加。 然而, 云层自动扩缩的范围仅限于存储网络能力, 这增加了成本和效率。 另一方面, 由于“ Network ” 的概念, 广域网会暴露一套可用于动态地分配和去分配应用程序的功能。 在本文中, 我们提议将云层应用的云层自动缩放概念扩展到网络的网络, 从而将网络的网络定位定位定位 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
边缘机器学习,21页ppt
专知会员服务
81+阅读 · 2021年6月21日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
3+阅读 · 2019年1月15日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
11+阅读 · 2019年1月24日
VIP会员
相关VIP内容
边缘机器学习,21页ppt
专知会员服务
81+阅读 · 2021年6月21日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
3+阅读 · 2019年1月15日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Top
微信扫码咨询专知VIP会员