Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here, we present a prototype model which is trained solely on two inputs: Geo infrared imagery leading up to the synoptic time of interest and intensity estimates up to 6 hours prior to that time. To estimate future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and then simulate the evolution of an ensemble of those profiles over the subsequent 12 hours by applying a Deep Autoregressive Generative Model (PixelSNAIL). To forecast TC intensities at hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated future radial profiles up to +12 h into a ``nowcasting'' convolutional neural network. We limit our inputs to demonstrate the viability of our approach and to enable quantification of value added by the observed and simulated future radial profiles beyond operational intensity estimates alone. Our prototype model achieves a marginally higher error than the National Hurricane Center's official forecasts despite excluding environmental factors, such as vertical wind shear and sea surface temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable structural forecasts that may be valuable for TC operational guidance.
翻译:因为静止卫星(Geo)图像提供了高时间分辨率的热带气旋(TC)行为窗口,我们研究了其在短期概率预测TC对流结构和随后预测TC强度方面的应用的可行性。在这里,我们介绍了一个原型模型,仅使用两个输入进行训练:Geo红外图像,在感兴趣的合成时期之前和强度估计在之前的6个小时内。为了估算未来的TC结构,我们从红外图像中计算云顶温度径向剖面,然后通过应用深度自回归生成模型(PixelSNAIL)模拟这些剖面的演变(12小时的模拟)。为了在第6和12小时预测TC强度,我们将操作强度估计(直到当前时间为止)和到+12小时的模拟未来径向剖面输入到一个“现在预报”卷积神经网络中。为了展示观测到的和模拟的未来径向剖面在操作强度估计之外的附加价值,我们限制了我们的输入。尽管我们的原型模型不考虑垂直风切变和海表温度等环境因素,但它的误差略高于美国国家飓风中心的官方预测。我们还表明,通过Geo红外图像的径向剖面可以合理预测TC对流结构的短期演变,从而产生可解释的结构预测,可能对TC操作指导有价值。